The Sunny Side of Cloudy:

Varying stellar temperature and incident radiation field

Cornelia Pabst, Leiden University

Introduction

We use Cloudy to study the effect of the temperature of the central star on the [CII] 158 μm emission from a PDR as compared to the adjacent HII region. In order to do so we set up a Cloudy grid with a hydrogen density of $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$, varying $T_{\rm eff}$ between 20,000 K and 100,000 K, modeling the spectrum as a blackbody, and varying the intensity of the incident far-UV radiation (within $6 \, {\rm eV} < h\nu < 13.6 \, {\rm eV}$) as $\log I_{\rm FUV}$ between -2 and 0, corresponding to $6.25 < G_0 < 625$ in Habing units, $1.6 \cdot 10^{-3} \, {\rm erg \, s^{-1} \, cm^{-2}}$. Here, we compute a 5×5 grid, the PDR truncated at $A_{\rm V} = 1$, because the computations are rather time-consuming. Moreover, we compare the [CII] emission to the FIR emission from the PDR, a diagnostic tool used in extragalactic studies. As an aside, we use Cloudy to calculate the heating efficiency for several elemental abundances and grain/PAH distributions and compare it to the curve computed by Bakes & Tielens (1994).

Conclusions

The pattern of absolute [CII] intensity resembles the kinetic temperature pattern of the grid. Both are more strongly dependent on $T_{\rm eff}$ in the HII region than in the PDR. At the gas density considered, also the [OI] 63 $\mu \rm m$ line becomes an important coolant, hence we show a figure of the combined [CII]+[OI] emission, as well.

The study shows that the stellar effective temperature does influence the emission characteristics, albeit more in the HII region than in the PDR. A caveat applies: At log $I_{\rm FUV} < -0.5$ and $T_{\rm eff} = 20,000\,\mathrm{K}$, there is not sufficient ionizing radiation to produce an HII region. Although $T_{\rm eff}$ does affect the absolute values slightly, the [CII] and FIR intensities lie on a single curve.

References

Cloudy 17.00: Ferland et al. (2017), Bakes & Tielens (1994)