Thermal equilibrium

- Heating by radiation field in photo case
- In coronal case external process sets temperature
- Cooling is anything that converts kinetic energy into light that escapes

Photoelectric heating

- ♦ AGN3 eq 3.1
- Dependence on depth
 - Spectrum, heating, across H+ region
- ◆ SED
 - Heating for different SEDs
- Save heating

Two types of lines

- ◆ Recombination AGN3 sec 4.2
 - $-q\sim1e-13 \text{ cm}^3 \text{ s}^{-1}$
 - Mainly H, He
- Collisionally excited AGN3 3.5
 - $-q\sim1e-9 \text{ cm}^3 \text{ s}^{-1}$
 - Heavy element

Energy levels for few, many electron systems

- ♦ H I, He I, He II
- O III

Two level atom AGN3 Sec 3.5

- Excitation, deexcitation rates
- Transition probabilities
- Critical density
- **♦** Two limits
 - Low densities, every excitation leads to emission of a photon
 - high densities, levels are n LTE, photon emission proportional to n_u A_{ul}

Recombination lines

- H+ + e -> H0* -> H0 + photons
- Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in LDL

Other cooling processes

- ♦ Save cooling command
- **♦** Look at various output